If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6y^2-9y+3=0
a = 6; b = -9; c = +3;
Δ = b2-4ac
Δ = -92-4·6·3
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-3}{2*6}=\frac{6}{12} =1/2 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+3}{2*6}=\frac{12}{12} =1 $
| 2d+32d=8 | | -7x+7=3x-3 | | (y-5)^2=(y-8)^2 | | (y-5)2=(y-8)2 | | (y+3)2=(y+8)2 | | y2+7=8 | | (1/2x/7)-(2-3x/8)=3/2+x/4 | | y2-6y=16 | | (3x+12)=x | | 4x+9-2x=30-20x-20 | | 5x-11=-2x+45 | | 10+6p=48 | | k-14=25 | | -11*x=-22 | | y+17=48 | | 0=(1-x)+2(x+1)-3(1-x) | | 1.2=x/x-1 | | 2x-35=160 | | x^2-6/x-2=x/2-x | | 3y-1.2/y+5=1/5 | | x-8/x+15=0.5 | | 81x+45=123 | | m-8/m+15=0.5 | | z/2+z/7+31=7z | | 5(x-3)=5x-15x=-4 | | 5x+4-13x-9-2x=0 | | (x-2)^2+(x+5)^2=148 | | 2.5y+67.8=0.5y-22 | | 2.5y+67.8=0.5y-28 | | 7x+15-5x-10=3x17+10x | | x–5/7=3x+1 | | 13x+2=6x+5 |